2 research outputs found

    CMOS compatible solidly mounted resonator for air quality monitoring

    Get PDF
    Air pollution has become a growing concern around the world. Human exposure to hazardous air pollutants is associated with a range of health problems and increased mortality. An estimated 40,000 early deaths per year are caused by the exposure to air pollutants in the UK alone, which cost over £20 billion annually to individuals and health services1. In this work, novel solidly mounted resonator (SMR) devices were developed for integration in a low-cost, portable air quality monitor for the real-time monitoring of particulate matter and volatile organic compounds (VOCs). Finite element models of the SMRs were developed to aid their design and simulate the response of the sensors to particles and exposure to VOCs. For particle sensing, a SMR based unit was developed, working in a dual mode configuration. The unit was characterised inside an environmental chamber, together with commercial reference instruments, to particles of known size and composition. A detection limit of 20 μg/m3 was found (below the safe exposure limit). To target fine particles (<2.5 μm), a virtual impactor was incorporated into the system. For VOC detection, the SMR devices were functionalised with polymer coatings to detect acetone and toluene vapours (most common VOCs in air). A polymer drop-coating system was developed to complete this aim (polymer film thicknesses <100nm). An automated VOC test station was developed to characterise the SMR based sensors to low ppm concentrations of the target vapours (<200 ppm). The SMR devices demonstrated a limit of detection of 5 ppm to toluene and 50 ppm of acetone (well below the safe exposure limits). A novel CMOS based SMR device, suitable for volume production and monolithic integration, was designed with an integrated microheater and CMOS acoustic mirror. The heater was included to vary the temperature of the sensing area (to enhance the sensitivity of the SMR to a particular VOC through temperature modulation or to clear particles off the surface). The fabricated device (1.9 GHz) exhibited good performance

    High frequency surface acoustic wave resonator-based sensor for particulate matter detection

    Get PDF
    This paper describes the characterization of high frequency Surface Acoustic Wave Resonator-based (SAWR) sensors, for the detection of micron and sub-micron sized particles. The sensor comprises two 262 MHz ST-cut quartz based Rayleigh wave SAWRs where one is used for particle detection and the other as a reference. Electro-acoustic detection of different sized particles shows a strong relationship between mass sensitivity (Δf/Δm) and particle diameter (Dp). This enables frequency-dependent SAWR sensitivity to be tailored to the size of particles, thus making these types of sensors good candidates for PM10, PM2.5 and ultrafine particle (UFP) detection. Our initial characterisation demonstrated a typical SAWR frequency shift of 60 Hz in response to a deposition of ca. 0.21 ng of 0.75 μm-sized gold particles (∼50 particles) on sensor’s surface. Sensor responses to different size particles, such as ∼30 μm diameter silicon, gold (diameters of ∼0.75 μm and ∼20 μm), ∼8 μm fine sugar, PTFE (∼1 μm and ∼15 μm), ∼4 μm talcum powder, and ∼2 μm molybdenum powder were evaluated, and an average mass sensitivity of 275 Hz/ng was obtained. Based on the results obtained in this study we believe that acoustic wave technology has great potential for application in airborne particle detection. Moreover, acoustic resonator devices can be integrated with CMOS interface circuitry to obtain sensitive, robust, low-power and low-cost particle detectors for variety of applications including outdoor environmental monitoring
    corecore